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Field Distribution in a Circular Waveguide

with a Corrugated Dielectric Lining

Tenneti C. Rao and P. McCormack

Abstract —The problem of wave propagation through a circular cylin-

der with a periodically interrupted dielectric lining is solved by a

boundary value approach by considering the region between the corru-

gations as a medium with a tensor permittivity. The characteristic

equation for the phase constant is derived by matching the field compo-
nents. Solutions for the phase constant are obtained and the variation of

the phase constant with the physical parameters is studied. The varia-
tion of the axial and circumferential electric field components in the
transverse plane is also studied.

I. INTRODUCTION

In many applications involving large reflector antenna sys-

tems, there is a growing need for a feed structure that will

combine the advantages of high gain, low spillover loss, reduced

side-lobe level, low cross-polarization, and high aperture effi-

ciency. Thus, Kay [1] in the U.S. and Minnet and Thomas [2] in

Australia independently developed the concepts of a corrugated

horn and a corrugated circular waveguide, respectively. In the

former case, Kay came to the conclusion that grooved walls in a

conical horn would present the same boundary conditions to all

polarizations and hence would create a tapered aperture field

distribution in all planes, resulting in a symmetric radiation

pattern with equal E- and H-plane beam widths. Minnet and

Thomas showed that the focal region fields of a paraboloidal

reflector consisted of a superposition of cylindrical hybrid modes,

which are the natural propagating modes of a circular wave-

guide with corrugated walls. It was realized that such walls are

anisotropic in the sense that they impose the same boundary

conditions on the electric and magnetic fields, which in turn

would lead to an axially symmetric radiation pattern. Clarricoats

and Saha [3] carried out a detailed analysis of the propagation

and radiation characteristics of a corrugated circular waveguide

feed. The radiation pattern and cross-polarization of a dielec-

tric-lined circular waveguide feed were determined by Kumar

[4]. If the dielectric lining of the circular waveguide is periodi-

cally interrupted, it is believed that the cross-polarization will be
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Fig. 1. Geometry of the problem.

significantly reduced, and some prelimina~ calculations were

reported by Mahmoud and Aly [5]. In their study, the region

between two disks is considered a medium with tensor permittiv-

ity. In the present article, we study the boundary value problem

of a dielectric-disk loaded circular waveguide and investigate the

propagation characteristics, for example, the phase constant and

its variation with the physical parameters of the structure. More

details are given elsewhere [6]. Furthermore, the field distribu-

tion in the transverse plane is studied; in particular, the varia-

tion of the axial and circumferential electric field components

with the normalized radius is examined.

II. SOLUTION OF THE BOUNDARY VALUE PROBLEM

The geometty of the structure under investigation is shown in

Fig. 1. A circular waveguide with an internal diameter of 2b
exists with its axis coinciding with the z axis of the cylindrical

coordinate system (p, ~, z). The walls of the waveguide are

assumed to be perfectly conducting and the waveguide is period-

ically loaded with dielectric disk of internal diameter 2a and

external diameter 2b. The disks have a thickness t and the

interdisk spacing is assumed to be s. The relative dielectric

constant of the disks is e, ~ and for generality we assume the

region O < p < a to have a dielectric constant c, ~. The region

between p = a and p = b k assumed to have a tensor permittiv-

ity whose components are given by [5]

(la)

where

fz=EoE,2/[~r2 –(f/L’)(~r2 -1)1 (lb)

and

6,=eo[l +( Er2–l)(t/L)], L=t i-s. (lC)

The axial components of the electric and magnetic fields in

region 1 (Os p < a) are given by

Ezl=AIJ1(klp) cos~exp(–j/3z) (2a)

n&.1 = ~lJ1(~lp)sin+exp(–jpz) (2b)

where A ~ and B1 are the amplitude constants, JI(klp) is the

Bessel function of the first kind and order 1, and ~ is the axial

phase constant. The transverse wavenumber is given by kl =
(kjE,l – p2)1/2, where /c. is the free-space wavenumber

(OJ=). In a similar manner, the axial components of the

electric and magnetic fields in region 2 (a < p < b) can be

0018 -9480/91 /0800-1424 $01.00 01991 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 8, AUGUST 1991 1425

written as

EZ2 = A2Pl(k2Mp)cos ~exp(– j~z) (3a)

~o~,z = B~Ql(kz~p) sin@ exp(– j~z) (3b)

where A ~ and Bz are the amplitude coefficients and the trans-

verse wavenumbers kz~ and k2M are given by

k;~=k~(e,\~o)–~2 (4a)

k~M=(~Z/~,)k&. (4b)

The electric and magnetic fields in region 2 have different

transverse wavenumbers, k2M and k2~, and this is a characteris-

tic of the tensor medium. The functions F’1(k2Mp) and Ql(k2Ep)

must satisfy the boundary conditions at the conducting boundary

at p = b and are hence given by

P1(k2Mp) = [Jl(k~~p)y](kz~b)

–.T1(k2Mb)Y1(k2Mp) ]/ Y1(k2Mb) (5a)

QAkm~) = [JAkz~p)V(kz&)

–J~(k2#)Y1(k2~p) ]/ Y~(k2~b). (5b)

Once the axial components of the electric and magnetic fields

are known, the circumferential components in each region can

be calculated from Maxwell’s equations. They are given in

region 1 by

E41=jsin@[(D/kl) Al{ Jl(klp)/klp}

+(ko/kl)BrJ; (klp)] (6a)

qoH41 = – jcos OIAl(kO/kl)~,lJ; (klp)

+ B1(P/kl){Jl(klp) /klP}] (6b)

and in region 2 by

Eoz = jsin$[(~/k,E)A2 {P1(k2~p)\k2~p}

+B2(ko/kzJQl(k2~ p)] (7a)

~O~oZ = – jCOSd[(ko/~2~)( ~,/~o)~~(k2~ /~2~)~!(k2~~)

+ B2(B/kzE){Ql(kz~p)/kz~p}] (7b)

where

P~(k2Mp) = [.T; (k2Mp)Y1(k2Mb)

– .11(k2Mb)Y;(k2Mp) ]/ Y1(k2Mb) (8a)

Q’l(kmp) = [J((kmp)y~(kz#)

–Jj(k2~b)Y;(k2~ p)]\ Y~(k2fib). (8b)

The boundary conditions at p = a require the continuity of

the tangential electric and magnetic field components, and the

elimination of the constants leads to the following characteristic

equation:

[

(ez\.so) P;(k2Ma) ●,1 .l~(kla)
—— —

‘k2Ma P1(k2Ma) kla .lI(kla) 1
[1Q\(&a) 1 J~(kla)

.— —— —

k~Ea Qt(kzEa) kla J,(kla) 1
=( P/k0)2[(kla)-2- (k2~u)-2]2+ (9)

The other equation relating the two transverse wavenumbers kl
and k2~ is given by

k&- kf=k~{(~f/eo)– erl} (lo)
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Fig. 2. Variation of /3/k. with t/L and b/a; koa = 1.0, e,z = 2.56.
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Fig. 3. Variation of f3/ko with t/L and b/a; koa = 1.5, .s,2 = 2.56.

The two equations (9) and (10) are solved to obtain kl and

k z~. Once k2~ is known, the other propagation constant, k ~M,
can be easily determined. The normalized phase constant

@/ ko) can be calculated from the equation

(~/ko)2= (’, \’o)-(k2~/ko)2. (11)

The amplitudes are obtained from the boundary conditions and

the relations

(A1/B1)2 = [(1/k2~a){Q1(k2 ~a)/Q1(k2~a)}

-(l/kla){J~(kla) /J1(kla)}]

-(erl/kla){J[(lcla) /J1(kla)}]-l (12)

A2/A1 = .J1(kla)/P1(k2Ma) (13)

B2/B1 = .11(kla)/Q1(k2~a). (14)

III. RESULTS AND DISCUSSION

The characteristic equation is numerically solved for a given

set of parameters and some of the results for the normalized

phase constant are shown in Figs. 2 and 3. Fig. 2 shows the

variation of the normalized phase constant (~/ ko) with the

ratio t/L for three values of the ratio b / a for a fried value of

koa = 1.0. In general, the phase constant increases with increas-

ing thickness ratio and b/a. In other words, closer spacing of

the dielectric disks in a circular waveguide of constant diameter

increases the value of the phase constant or decreases the phase

velocity of the wave compared with a wider spacing. The param-

eter b/a may also be viewed as the corrugation depth. For the
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Fig. 5. Variation of the circumferential electric field with p/a and
t/L; b/a = 2.0, e,z = 2.56.

same t/L ratio and koa, the normalized phase constant in-

creases with increasing corrugation depth. Fig. 3 shows the

variation of /3/ kO with t/L for a larger value of koa. Increas-

ing koa appears to result in a larger value of /? /kO for the same

t/L ratio. When all the physical parameters and the permittiv-

ity remain unchanged, increasing k. a corresponds to an in-

crease in frequency. Hence, an increase in frequency acts to

slow down the propagating wave in a cylindrical waveguide

loaded with dielectric disks. Consequently, the ratio /3/ kO ap-

proaches unity for a smaller value if kOa is larger. We can also

view the disk-loaded cylindrical waveguide as a band-pass filter

and these results indicate that an increase in frequency would

lead to a narrowing of the bandwidth.

Fig. 4 shows the variation of the axial component E= with the

normalized radius for three different values of the thickness

ratio. The axial electric field is zero on the axis, increases slowly

in region 1 to a maximum value, decreases in region 2, and

finally vanishes at the conducting boundary at p = b. The magni-

tude of the electric field decreases with increasing t/L ratio.

Fig. 5 shows the variation of the circumferential electric field

component in the transverse plane. The @ component starts at a

constant value on the axis and is almost constant in region 1 for

larger t/L ratios. For lower values of t/L,however, it tends to

decrease slightly. In region 2, it decreases monotonically and at

the conducting boundary it goes to zero. Once again, we notice

that the magnitude is higher for higher values of the thickness

ratio. The variations of the axial and circumferential compo-

nents of the electric field with respect to the angular coordinate

$ are given by cos ~ and sin ~, respectively.

IV. CONCLUSIONS

The problem of guided wave propagation in a circular wave-

guide with a corrugated dielectric lining is solved by a boundary

value problem by regarding the medium between the corruga-

tions as a medium with tensor permittivity. By matching the

field components at the boundaries, the characteristic equation

for the phase constant is derived. This characteristic equation,

which is transcendental in nature, is numerically solved for a

given set of physical parameters, for example the diameter of

the cylinder, the corrugation depth, the thickness ratio, and the

permittivity of the dielectric material. Some representative re-

sults of the normalized phase constant and its variation with

different parameters are shown. The variations of the axial and

circumferential electric field components in the transverse plane

with the normalized radius are shown for different values of the

thickness ratio.
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Asymmetrical Coplanar Waveguide with Finite

Metallization Thickness Containing

Anisotropic Media

Toshihide Kitazawa and Tatsuo Itoh

Abstract —The spectral-domain approach (SDA) is extended in the
present paper for symmetrical and asymmetrical coplanar waveguides

with anisotropic media. The qnasi-static and the hybrid-mode analytical

method are developed in the spectral domain taking the metallization
thickness effect into consideration. Numerical computations inclnde the
quasi-static and frequency-dependent hybrid-mode values of the phase
coustants and characteristic impedances for the symmetrical and asym-
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