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Field Distribution in a Circular Waveguide
with a Corrugated Dielectric Lining

Tenneti C. Rao and P. McCormack

Abstract —The problem of wave propagation through a circular cylin-
der with a periodically interrupted dielectric lining is seolved by a
boundary value approach by considering the region between the corru-
gations as a medium with a tensor permittivity. The characteristic
equation for the phase constant is derived by matching the field compo-
nents. Solutions for the phase constant are obtained and the variation of
the phase constant with the physical parameters is studied. The varia-
tion of the axial and circumferential electric field components in the
transverse plane is also studied.

1. INTRODUCTION

In many applications involving large reflector antenna sys-
tems, there is a growing need for a feed structure that will
combine the advantages of high gain, low spillover loss, reduced
side-lobe level, low cross-polarization, and high aperture effi-
ciency. Thus, Kay [1] in the U.S. and Minnet and Thomas [2] in
Australia independently developed the concepts of a corrugated
horn and a corrugated circular waveguide, respectively. In the
former case, Kay came to the conclusion that grooved walls in a
conjcal horn would present the same boundary conditions to all
polarizations and hence would create a tapered aperture field
distribution in all planes, resulting in a symmetric radiation
pattern with equal E- and H-plane beam widths. Minnet and
Thomas showed that the focal region fields of a paraboloidal
reflector consisted of a superposition of cylindrical hybrid modes,
which are the natural propagating modes of a circular wave-
guide with corrugated walls. It was realized that such walls are
anisotropic in the sense that they impose the same boundary
conditions on the electric and magnetic fields, which in turn
would lead to an axially symmetric radiation pattern. Clarricoats
and Saha [3] carried out a detailed analysis of the propagation
and radiation characteristics of a corrugated circular waveguide
feed. The radiation pattern and cross-polarization of a dielec-
tric-lined circular waveguide feed were determined by Kumar
[4]. If the dielectric lining of the circular waveguide is periodi-
cally interrupted, it is believed that the cross-polarization will be
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Fig. 1. Geometry of the problem.

significantly reduced, and some preliminary calculations were
reported by Mahmoud and Aly [5]. In their study, the region
between two disks is considered a medium with tensor permittiv-
ity. In the present article, we study the boundary value problem
of a dielectric-disk loaded circular waveguide and investigate the
propagation characteristics, for example, the phase constant and
its variation with the physical parameters of the structure. More
details are given elsewhere [6]. Furthermore, the field distribu-
tion in the transverse planc is studied; in particular, the varia-
tion of the axial and circumferential electric field components
with the normalized radius is examined.

II. SoLuTioN oF THE BOUNDARY VALUE PROBLEM

The geometry of the structure under investigation is shown in
Fig. 1. A circular waveguide with an internal diameter of 25
exists with its axis coinciding with the z axis of the cylindrical
coordinate system (p.¢,z). The walls of the waveguide are
assumed to be perfectly conducting and the waveguide is period-
ically loaded with dielectric disk of internal diameter 2a and
external diameter 2b. The disks have a thickness ¢ and the
interdisk spacing is assumed to be s. The relative dielectric
constant of the disks is €,, and for generality we assume the
region 0 < p<a to have a dielectric constant ¢,;. The region
between p=a and p = b is assumed to have a tensor permittiv-
ity whose components are given by [5]

e 0 0
e=|0 €, 0 (1a)
0 0 -
where
Ez=EOEIZ/[ErZ_(t/L)(ErZ_l)] (lb)
and
€, =eo[1+(e,,~1)(¢/L)], L=t+s. (1c)

The axial components of the eclectric and magnetic fields in
region 1 (0 < p < a) are given by

E, =AJ(kp)cosexp(—jBz)

noH, = BJ(k,p)sin ¢ exp (— jBz)

(22)
(2b)

where A; and B, are the amplitude constants, J,(k,p) is the
Bessel function of the first kind and order 1, and g is the axial
phase constant. The transverse wavenumber is given by k=
(kZe,, — B*)'/?, where k, is the free-space wavenumber
(0y/po€q)- In a similar manner, the axial components of the
electric and magnetic fields in region 2 (a<p<b) can be
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written as
E,;=A;P(kypp)cos dexp(— jBz) (3a)
MoH,2 = B,Q(kypp)sindexp (-~ jBz) (3b)

where 4, and B, are the amplitude coefficients and the trans-
verse wavenumbets &, and k,,, are given by

kip=ki(e /e0)—B? (42)
k3w =(e./€)k3g. (4b)
The electric and magnetic fields in region 2 have different
transverse wavenumbers, k,,, and k, g, and this is a characteris-
tic of the tensor medium. The functions Py(k,,,p) and Q(k,xp)

must satisfy the boundary conditions at the conducting boundary
at p=>b and are hence given by

Pi(kyyp) = [Jl(k:lMp)Yl(kZMb)

= (ko D)Yi(kapip)]/ Yi(kob)  (5)
O:(kapp) = [Jl(k2Ep)Yll(k2Eb)
- Ji(szb)Y1(szP)]/ Yf(szb)- (Sb)

Once the axial components of the electric and magnetic fields
are known, the circumferential components in each region can
be calculated from Maxwell’s equations. They are given in
region 1 by

Eg=ising[(B/k)A{Ti(kip)/kyp)

+(k0/k1)Bllj(klp)] (6a)
MoHy; = — jcos ¢[A1(k0/k1)€r1fi(k1p)
+Bl(B/k1){Jl(klp)/klp}] (6b)
and in region 2 by
Eyy=jsing[(B/kyp) Ax{ Pi(kamp)/ kamp)
+ By(ko / ka5) Q1 Korp)] (7a)

noHy, = — jeos ¢[ (ko /kop) (e, / €0) Axkaps / ko) Pi(konp)

+ By(B/k2e){Q1(k2p)/ kyep}] (7v)
where
Pi(kapp) =1 (kopp)Yi(k2pb)
— Ji(kouD)Y1(kanep)]/ Yi(kopb)  (82)
Q'i(kypp) =71 (k2pp)Yi(ky5b)
_]i(kZEb)Yl,(kZEp)]/Y{(kZEb)' (8b)

The boundary conditions at p=a require the continuity of
the tangential electric and magnetic field components, and the
elimination of the constants leads to the following characteristic
equation:

[(EZ/GO) Pi(kpa) _&n J{(kla)}

Pi(kypa)  kya Ji(kya)

. 1 Qy(kypa) _ *1_ Ji(kqa)
kyga Qi(kyga) kia Ji(kia)

kZMa

= (B/ko)’ (k1) 2= (ko) . )

The other equation relating the two transverse wavenumbers &,
and k,, is given by

k%E—kf=kg{(et/€0)_Erl} (10)
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Fig. 3. Variation of B /k, with t /L and b /a; kqa=1.5, €,, = 2.56.

The two equations (9) and (10) are solved to obtain k, and
kyg. Once k,5 is known, the other propagation constant, k,,,,
can be ecasily determined. The normalized phase constant
(B / k) can be calculated from the equation

(B/ ko)’ = (e, /€)— (kag / ko). (1)

The amplitudes are obtained from the boundary conditions and
the relations

(AI/BI)2 = [(1/k2Ea){Qll(kZEa)/Ql(sza)}
—(1/k1a){Ji(kia) /T i(kqa)}]
'[(E: /50)(1/k2Ma){Pi(kZMa)/Pl(kZMa)}

—(en /K@) {Ti(kya) /Ty (kya)}] ? (12)
Ay /A= Jl(kla)/P1(k2M”) (13)
Bz/Bl=Jl(k1a)/Q1(k2Ea). (14)

III. ResuLts AND DiscussioN

The characteristic equation is numerically solved for a given
set of parameters and some of the results for the normalized
phase constant are shown in Figs. 2 and 3. Fig. 2 shows the
variation of the normalized phase constant (8/k,) with the
ratio ¢ /L for three values of the ratié b /a for a fixed value of
koa=1.0. In general, the phase constant increases with increas-
ing thickness ratio and b /a. In other words, closer spacing of
the dielectric disks in a circular waveguide of constant diameter
increases the value of the phase constant or decreases the phase
velocity of the wave compared with a wider spacing. The param-
eter b /a may also be viewed as the corrugation depth. For the
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same f/L ratio and kya, the normalized phase constant in-
creases with increasing corrugation depth. Fig. 3 shows the
variation of B /k, with ¢ /L for a larger value of kya. Increas-
ing kya appears to result in a larger value of 8 / k, for the same
t /L ratio. When all the physical parameters and the permittiv-
ity remain unchanged, increasing kya corresponds to an in-
crease in frequency. Hence, an increase in frequency acts to
slow down the propagating wave in a cylindrical waveguide
loaded with dielectric disks. Consequently, the ratio B /k, ap-
proaches unity for a smaller value if kya is larger. We can also
view the disk-loaded cylindrical waveguide as a band-pass filter
and these results indicate that an increase in frequency would
lead to a narrowing of the bandwidth.

Fig. 4 shows the variation of the axial component E, with the
normalized radius for three different values of the thickness
ratio. The axial electric field is zero on the axis, increases slowly
in region 1 to a maximum value, decreases in region 2, and
finally vanishes at the conducting boundary at p = b. The magni-
tude of the electric field decreases with increasing ¢ /L ratio.

Fig. 5 shows the variation of the circumferential electric field
component in the transverse plane. The ¢ component starts at a
constant value on the axis and is almost constant in region 1 for
larger t /L ratios. For lower values of ¢ /L, however, it tends to
decrease slightly. In region 2, it decreases monotonically and at
the conducting boundary it goes to zero. Once again, we notice
that the magnitude is higher for higher values of the thickness
ratio. The variations of the axial and circumferential compo-
nents of the electric field with respect to the angular coordinate
¢ are given by cos ¢ and sin ¢, respectively.
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IV. ConcLusIONS

The problem of guided wave propagation in a circular wave-
guide with a corrugated dielectric lining is solved by a boundary
value problem by regarding the medium between the corruga-
tions as a medium with tensor permittivity. By matching the
field components at the boundaries, the characteristic equation
for the phase constant is derived. This characteristic equation,
which is transcendental in nature, is numerically solved for a
given set of physical parameters, for example the diameter of
the cylinder, the corrugation depth, the thickness ratio, and the
permittivity of the dielectric material. Some representative re-
sults of the normalized phase constant and its variation with
different parameters are shown. The variations of the axial and
circumferential electric field components in the transverse plane
with the normalized radius are shown for different values of the
thickness ratio.
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Asymmetrical Coplanar Waveguide with Finite
Metallization Thickness Containing
Anisotropic Media

Toshihide Kitazawa and Tatsuo Itoh

Abstract —The spectral-domain approach (SDA) is extended in the
present paper for symmetrical and asymmetrical coplanar waveguides
with anisotropic media. The quasi-static and the hybrid-mode analytical
method are developed in the spectral domain taking the metallization
thickness effect into consideration. Numerical computations include the
quasi-static and frequency-dependent hybrid-mode values of the phase
constants and characteristic impedances for the symmetrical and asym-
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